|
|
SoloKeep
|
|
|
|
|
|
|
Версия: |
2.0 |
Автор: | Solostar Software |
Лицензия: | Shareware |
Скачать |
Цена: | $9.99 |
Описание:
SoloKeep is a fast and easy to use application that stores all your passwords using encryption and password protection. SoloKeep can keep track of those hard to remember website passwords and other login information. Using a powerful encryption algorithm, SoloKeep ensures that no one else will be able to view your passwords without knowing your personal SoloKeep password. You'll never have to remember another username and password again.
Features:
Viewing your personal passwords is quick and easy.
Passwords are stored behind encryption and password protection.
Allows for an unlimited amount of users to store their personal passwords.
Allows for an unlimited amount of passwords to be stored for each user.
Import passwords from backup or a different account.
Export passwords for backup or importing to a different account.
Automatically logout after inactivity.
Randomly generate passwords for your accounts.
Minimize SoloKeep to the system tray.
The ability to show or hide passwords in the main grid.
The passwords can be sorted by title, username, password, URL or comments.
Find text in multiple grid columns.
Copy text straight from grid.
Visit the password website with the click of a button.
Password information is stored in separate encrypted files for each user. This allows for easy backup of your password information.
Only your chosen SoloKeep password can be used to gain access to your passwords. Do not forget this password, as it is the only way to decrypt your password information.
Trial Limitations:
A maximum of 2 user accounts.
A maximum of 20 passwords per user.
Unable to import passwords.
A strange feeling that you should buy the full version.
Скриншот:
|
|
|
|
|
|
|
|
Афоризм
|
|
|
|
|
Душа индейца, верящего в метемпсихозию, похожа на червячка в коконе. К. Прутков
|
|
|
|
|
Анекдот
|
|
|
|
|
- как математически доказать, что линия партии - прямая - каждая точка этой линии - точка перегиба. Поэтому в каждой точке вторая производная равна нулю, а это - характеристическое свойство прямой.
|
|
|
|
|
Прикол
|
|
|
|
|
Выпьем за хороших людей - нас так мало осталось.
|
|
|
|
|
|